
Angular 4 and more…

TypeScript, Reactive Programming, and more.

Agenda

1. Live demo of real Angular4 App in DNN

2. Background: This is Angular, CLI and TS

3. Live demo building your first Angular App

4. Background: Developing JS in 2017

5. Live deep-dive into the DNN-App

6. Background: Reactive Programming

7. Real integration into DNN w/security

8. Background: Angular vs. React vs. Others

Who’s talking

 Founded 2sic in 1999

 Architect of 2sxc
since 2012

 Angular since 2014

 Blogger, daddy, nerd,
ceo, checklist-freak,
world-traveler, …

Daniel the iJungleboy – est ‘78

 Joined 2sic 2016

 Worked on complex
AngularJS 1.x
solutions

 Lead Dev on new
Quick-Dialog in 2sxc 9

Christoph

2sxc 9 with Angular 4

Angular4 Directory App in DNN

Live Demo

Background: Angular

Angular

What it is

What it’s
for

What it
does

Paradigms

 JavaScript based

 Google backed

 Completely redone
(like .net core)

 Angular = new
 Platform

 AngularJS = old
 Framework

Angular is a Way to Build Solutions

 Any kind of application

 Usually with visual
output und user
interaction

 Cross platform &
device

 Usually in a browser

 …or on a server

 …or on a native device

Angular is for creating…

 Standardize
structures
 Files / folders

 Parts / Components

 Standardize how
components relate
and communicate

 Recommends
 libraries like Rx

 tools like TS, WebPack

 dev workflow like CLI

Angular does

 Very pattern oriented

 Dependency Injection

 Separation of
Concerns

 Every feature is an
independent part

 Strong testability, both
unit and e2e

 Functional / Reactive
Programming with
Observables

 JS Type Safety with
TypeScript

Angular Paradigms

Developers must
understand what
they do and why

Things are done very
ground-up. Then tools
are added, to make it
faster to develop.

 Dependency Injector

 Various view engines

 like browser-engine

 Lots of pre-build parts
for optional use

 AOT-Compiler

 Server Runtime

 Native Runtime

Angular has…lots of optional stuff

TypeScript & Angular CLI

Background

 JS / ECMA 7++

 Provides Types,
Interfaces and
Classes in JS

 …and Intelisense!

 Usually supports JS
which not all browsers
support…

 …and will be transpiled
to simpler JS

A word on TypeScript

 Standardizes…

 …and streamlines a
lot of work steps

 You basically cannot
develop Angular
without the CLI

 Does project
structure, compiling,
WebPacking and way
more automatically

 Requires node

The Angular CLI

Let’s Build with Angular

Developing JS in 2017

 @-annotations

 modules

 exports

 constructors

 let x = 7;

 Arrows (lambda) =>

 Classes & Interfaces

 Rx & Observables

 Multi-line strings

This is not Your Grandpa’s JS

 node & npm

 git

 TypeScript and ES7

 Patterns and
Architecture
 Dependency Injection,

SoC, SRP, …

 Reactive (Stream-based)
programming

 One way data flow

 Functional
programming…

Optionally learn this:

 Gulp / Grunt (so 2015)

 WebPack (so 2016)

Slowly unlearn this:

 Two-way data binding

 Promises

 jQuery

 Server rendered HTML

 MVC

Learn if you’re a Web Dev in 2017

Deep Dive into Real App

Reactive Programming

Stop making promises

 New data arrives

 Clicks happen

 Settings/filters
change

These events are not
coordinated. One can
defeat the other…

Events happen…in crazy sequence

We need a better way to
model this kind of real-
world problem

Streams, Data, Observables

Google: The introduction to Reactive Programming you've been missing

Reactive programming is wiring…

Commands like map / reduce

 The same model to
describe a problem in
all languages

 Like LINQ for events

 …but complete change
of paradigms

RxJS, RxNet, RxJava, …

Example of Events in App

 See observables code in our app

One Way Data Flow

Stop two-way bindings, and probably stop MVC

Two Way Data Binding is Dead

DNN Integration

Challenges

 Runtime needs DNN dependencies

 Module/tab ID and security token

 Initial base path

 Development workflow

 Change / recompile / reload time

 Package distribution

 Multiple Apps per page

Goal

1. stay within Angular
conventions

1. IoC

2. npm

2. loose coupling

3. ensure that
environment changes
don’t require a rebuild

4. provide optional
overrides for ng-serve
mode

 Auto-detect the
context

 moduleID, TabID,
security token etc.

 Replace Http-Service
with a dnn-version

 dependency injection

Our Solution is 80% complete

Let’s look at some code 

 NPM Packages (beta, should get done next
week)

 Dependency Injection for all Http

 See the DnnHttpProvider in the Provider
section

 Root component must do auto-detect

 See AppComponent.ts

 …extends DnnAppComponent

 Super(…, …);

Angular vs. React vs. XYZ

Every fan can prove that he’s right

 Search stats

 Performance numbers

 Some brand using or backing XYZ

 Superior paradigms

 Anecdotal evidence

The leading frameworks 2017

Inspiring Contenders

 Anything with a large
community will thrive

 …and any really good
idea will be copied by
the others

 Angular CLI – inspired
by ember

 Angular view & virtual
DOM – inspired by
React / JSX

Pick your poison 

Quick Recap!

 JS is really big today

 both Angular
(platform) & React
(with Redux) are good
for 2017

 Observable Streams

 One-Way data flow

 Patterns everywhere
 no more room for

people who ignore
theory / background

 Angular 4 is stable
and works in
productions

 Angular Material is not
complete yet

 Tools are good and
productive

 Correct DNN
integration is hard, but
easy when we’re done

Angular and JS 2017

Thank you!

Questions?

